8,248 research outputs found

    Upper transition point for percolation on the enhanced binary tree: A sharpened lower bound

    Full text link
    Hyperbolic structures are obtained by tiling a hyperbolic surface with negative Gaussian curvature. These structures generally exhibit two percolation transitions: a system-wide connection can be established at a certain occupation probability p=pc1p=p_{c1} and there emerges a unique giant cluster at pc2>pc1p_{c2} > p_{c1}. There have been debates about locating the upper transition point of a prototypical hyperbolic structure called the enhanced binary tree (EBT), which is constructed by adding loops to a binary tree. This work presents its lower bound as pc20.55p_{c2} \gtrsim 0.55 by using phenomenological renormalization-group methods and discusses some solvable models related to the EBT.Comment: 12 pages, 20 figure

    Superconducting transition of a two-dimensional Josephson junction array in weak magnetic fields

    Full text link
    The superconducting transition of a two-dimensional (2D) Josephson junction array exposed to weak magnetic fields has been studied experimentally. Resistance measurements reveal a superconducting-resistive phase boundary in serious disagreement with the theoretical and numerical expectations. Critical scaling analyses of the IVIV characteristics indicate contrary to the expectations that the superconducting-to-resistive transition in weak magnetic fields is associated with a melting transition of magnetic-field-induced vortices directly from a pinned-solid phase to a liquid phase. The expected depinning transition of vortices from a pinned-solid phase to an intermediate floating-solid phase was not observed. We discuss effects of the disorder-induced random pinning potential on phase transitions of vortices in a 2D Josephson junction array.Comment: 9 pages, 7 figures (EPS+JPG format), RevTeX

    Nonequilibrium quantum criticality in bilayer itinerant ferromagnets

    Full text link
    We present a theory of nonequilibrium quantum criticality in a coupled bilayer system of itinerant electron magnets. The model studied consists of the first layer subjected to an inplane current and open to an external substrate. The second layer is closed and subject to no direct external drive, but couples to the first layer via short-ranged spin exchange interaction. No particle exchange is assumed between the layers. Starting from a microscopic fermionic model, we derive an effective action in terms of two coupled bosonic fields which are related to the magnetization fluctuations of the two layers. When there is no interlayer coupling, the two bosonic modes possess different dynamical critical exponents z with z=2 (z=3) for the first (second) layer. This results in multi-scale quantum criticality in the coupled system. It is shown that the linear coupling between the two fields leads to a low energy fixed point characterized by the larger dynamical critical exponent z=3. The perturbative renormalization group is used to compute the correlation length in the quantum disordered and quantum critical regimes. We also derive the stochastic dynamics obeyed by the critical fluctuations in the quantum critical regime. Comparing the nonequilibrium situation to the thermal equilibrium scenario, where the whole system is at a temperature T, we find that the nonequilibrium drive does not always play the role of temperature.Comment: 20+ pages, 3 figures; Revised version as accepted by PRB, added figure of mean field phase diagra

    Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    Full text link
    We report 209Bi NMR and NQR measurements on a single crystal of the Kondo insulator U3Bi4Ni3. The 209Bi nuclear spin-lattice relaxation rate (T11T_1^{-1}) shows activated behavior and is well-fit by a spin gap of 220 K. The 209Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Production and detection of doubly charmed tetraquarks

    Full text link
    The feasibility of tetraquark detection is studied. For the cc\bar{u}\bar{d} tetraquark we show that in present (SELEX, Tevatron, RHIC) and future facilities (LHCb, ALICE) the production rate is promising and we propose some detectable decay channels.Comment: 6 pages, 5 figure

    Dynamics of Magnetic Defects in Heavy Fermion LiV2O4 from Stretched Exponential 7Li NMR Relaxation

    Full text link
    7Li NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small concentration of magnetic defects within the structure drastically changes the 7Li nuclear magnetization relaxation versus time from a pure exponential as in pure LiV2O4 to a stretched exponential, indicating glassy behavior of the magnetic defects. The stretched exponential function is described as arising from a distribution of 7Li nuclear spin-lattice relaxation rates and we present a model for the distribution in terms of the dynamics of the magnetic defects. Our results explain the origin of recent puzzling 7Li NMR literature data on LiV2O4 and our model is likely applicable to other glassy systems.Comment: Four typeset pages including four figure
    corecore